|
Border Collie DNA Bundle: CEA + IGS + MDR1 + Raine + SN + NCL + TNS + GGD
Test number: 8626 (this test number replaces the old 8702)
Price: £ 144.00 (including VAT) for all 8 tests
|
|
|
|
1 ) Collie Eye Anomaly (CEA) / Choroidal Hypoplasia (CH) *
|
|
Re ISDS: Please note that this test is accepted by the ISDS provided that the sample is collected by a vet who should also sign a sample collection form which can be downloaded from the following link: ISDS DNA Bundle Order Form '
Kennel Club: results of this test is accepted by the Kennel Club
|
|
|
|
Breeds
|
Australian Shepherd
,
Australian Kelpie
,
Bearded Collie
,
Border Collie
,
Boykin Spaniel
,
Collie
,
English shepherd
,
Hokkaido
,
Lancashire Heeler
,
Longhaired Whippet
,
Miniature American Shepherd
,
Nova Scotia Duck tolling Retriever ( NSDTR / Toller)
,
Rough Collie
,
Shetland Sheepdog (Sheltie)
,
Silken Windhound
,
Smooth Collie
,
Long Haired Whippet
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Australian Shepherd, Bearded Collie, Border Collie, Lancashire Heeler, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Rough Collie, Shetland Sheepdog (Sheltie), and Smooth Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
Collie Eye Anomaly is an inherited disease with recessive mode of inheritacne which results in abnormal development of the eye's choroid.The disease can be mild or servere, in the mild form of the disease, there is a thinning in the choroid layer of the eye but the dog's vision remains normal, however, dogs with the mild form of the disease can produce severly afected offspring.
In the Severe form of the disease, the dog can suffer serious loss of vision, Colobomas can be seen around and at the optic nerve head as outpouchings in the eye tissue layers. Colobomas may lead to secondary complications such as partial or complete retinal detachments and/or growth of new but abnormal blood vessels with bleeding inside the eye. The disease can affect one or both eyes and can lead to vision loss although this disease rarely lead to complete blindness.
* test performed by partner lab
|
|
|
|
Trait of Inheritance |
.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Collie Eye Anomaly (CEA) / Choroidal Hypoplasia (CH) *. The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / CEA [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Collie Eye Anomaly (CEA) / Choroidal Hypoplasia (CH) * but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: CEA / CEA [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Collie Eye Anomaly (CEA) / Choroidal Hypoplasia (CH) * and will pass the mutant gene to its entire offspring
|
|
|
|
|
2 ) Cobalamin Malabsorption (Imerslund-Gräsbeck syndrome (IGS))
|
Breeds
|
Beagle
,
Border Collie
,
Komondor
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Beagle, and Border Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
Cobalamin malabsorption (merslunf-Gräsbeck Syndrome (IGS)) refers to a genetic disorder by which the vitamin B12, also known as cobalamin, fails to be absorbed from the intestine. Lack of cobalamin leads to changes in the hematopoietic system and to neurological symptoms due to irreversible damage of the brain and nervous system. Symptoms include anorexia, lethargy and failure to gain weight. Cobalamin malabsorption can be managed by supplementation with regular doses of cobalamin.
|
|
|
|
Trait of Inheritance |
recessive trait of inheritance
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Cobalamin Malabsorption (Imerslund-Gräsbeck syndrome (IGS)). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / IGS [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Cobalamin Malabsorption (Imerslund-Gräsbeck syndrome (IGS)) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: IGS / IGS [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Cobalamin Malabsorption (Imerslund-Gräsbeck syndrome (IGS)) and will pass the mutant gene to its entire offspring
|
|
|
|
|
3 ) MDR1 Gene Varian / Ivermectin Sensitivity * (ABCB1)
|
Breeds
|
American White Shepherd
,
Australian Shepherd
,
Bobtail
,
Border Collie
,
Collie
,
Elo
,
English shepherd
,
German Shepherd
,
Kromfohrländer
,
Longhaired Whippet
,
McNab Shepherd (McNab Border Collie)
,
Miniature American Shepherd
,
Old English Sheepdog (Bobtail)
,
Rough Collie
,
Shetland Sheepdog (Sheltie)
,
Silken Windhound
,
Smooth Collie
,
Waeller (Wäller)
,
White Swiss Shepherd ( Berger Blanc Suisse )
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Australian Shepherd, Border Collie, Rough Collie, Shetland Sheepdog (Sheltie), and Smooth Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
MDR1 is a genetic disorder found in many dog breeds. Affected dogs, when treated with certain common drugs such as Ivermectin and loperamide (Imodium), are unable to pump out these drugs from the brain resulting in poisoning and neurologic symptoms ranging from tremors, anorexia and excess salivation to blindness, coma and even death. Some of these drugs such as Ivermectins, which vets prescribe extensively for the treatment of parasite infections, are able to cause toxicity at 1/200th of the dose required to cause toxicity in healthy dogs.
Scientists discovered that these dogs lack a protein (P-Glycoprotein), which is responsible for pumping out many drugs and toxins from the brain, and that affected dogs show signs of toxicity because they are unable to stop drugs from permeating their brains. Researchers have identified that this condition is due to a mutation in the multi-drug resistance gene [MDR1].
LIST OF DRUGS THAT CAUSE SENSITIVITY TO DOGS WITH MDR1 MUTATION
Class A |
Do not use these drugs in dogs with MDR1 Gene Defect |
Ivermectine substances "Anti parasites": (Diapec®, Ecomectin®, Equimax®, Eqvalan®, Ivomec®, Noromectin®, Paramectin®, Qualimec®, Sumex®, Virbamec®)
Doramectine substances "Anti parasites": (Dectomax® )
Loperamide substances "ant diarrheal ":
(Imodium®)
Moxidectine substances "Anti Parasites" (Cydectin®, Equest®) |
Class B |
Use only under close control of veterinarian |
Cytostatics "Chemotherapy": (Vinblastine, Vincristine, Doxorubicine, Paclitaxel, Docetaxel, Methotrexat, Vincristine)
Immunosuppressive: (Cyclosporine A)
Heart glycosides: (Digoxine, Methyldigoxine)
Opioids: (Morphium)
Antiarrhythmics: (Verapamil, Diltiazem, Chinidine)
Antiemetics (Ondansetron, Domperidon, Metoclopramide )
Antibiotics (Sparfloxacin, Grepafloxacin, Erythromycin)
Antihistamin (Ebastin)
Glucocorticoid (Dexamethason)
Acepromazine (tranquilizer and pre-anesthetic agent) *
Butorphanol "analgesic and pre-anesthetic agent" *
Other drugs:
Etoposide, Mitoxantrone, Ondansetron, Paclitaxel, Rifampicin |
Class C |
Can be used only in the permitted application form and dose! |
Selamectin (Stronghold®), Milbemax® and Advocate® . |
* In dogs with the MDR1 mutation, acepromazine and butorphanol tend to cause more profound and prolonged sedation in dogs . It is recommended to reduce the dose by 25% in dogs heterozygous for the MDR1 mutation (MDR1 / N) and by 30-50% in dogs homozygous for the MDR1 mutation (MDR1 / MDR1).
|
|
|
|
|
Description |
This is a mutation-based gene test, which offers many advantages over other methods
The MDR1 gene variant can be detected, using molecular genetic testing techniques. By DNA testing the mutation can be shown directly. The testing is carried out by state of the art laboratory methods and therefore provides a very high accuracy. In general DNA tests can be done at any age. These tests identify both affected and carrier animals. The mutation can be shown directly, what clearly identifies homozygous affected animals. The genetic test offers the unique possibility to identify Ivermectin sensitive animals prior to treatment with Ivermectin and other drugs (see list). * partner lab
Please note drug list may not be up to date. The WSU Veterinary CLinical Pharmacology Lab may have a more updated list https://vcpl.vetmed.wsu.edu/problem-drugs. Please note that there maybe other problem drugs which may have not been yet identified.
|
|
|
|
Trait of Inheritance |
Dogs that are homozygous for the mutation display, due to a non-functional transporter the ivermectin sensitive phenotype. They can show increased absorption of ivermectin and other substrates e.g. Digoxin, Vincristine, Doxorubicin, Cyclosporin A, Grepafloxacin, Dexamethasone and Loperamide (See list of drugs). Heterozygous animals (carriers) may show sensitivity to avermectins and other drugs. They are able to propagate the responsible mutation throughout the population and it is therefore important that carrier animals are detected prior to breeding. Carriers mayhave sensitivity and should be treated with care
|
Inheritance : AUTOSOMAL
trait
|
|
|
|
|
|
|
4 ) Sensory Neuropathy ( SN )
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Border Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
Sensory Neuropathy (SN) is an inherited neurological disease affecting the Border Collie breed. The disease is characterised by degeneration of sensory and motor nerve cells. Symptoms begin between the age of 2 and 7 months and include: knuckling of the feet, wounds caused by self chewing or licking of the limbs due to lack of feeling, progressive loss of coordination (ataxia), progressive loss of sensation occurs in all limbs, urinary incontinence and regurgitation can occur in the later stages of the disease. Affected dogs are usually euthanized around the age of 2 years.
|
|
|
|
Trait of Inheritance |
.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Sensory Neuropathy ( SN ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / SN [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Sensory Neuropathy ( SN ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: SN / SN [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Sensory Neuropathy ( SN ) and will pass the mutant gene to its entire offspring
|
|
|
|
|
5 ) Neuronal Ceroid Lipofuscinosis ( CL / NCL )
|
Breeds
|
American Bulldog
,
Border Collie
,
Cane Corso (Italian)
,
Chihuahua
,
Chinese Crested
,
English Setter
,
Golden Retriever
,
Goldendoodle
,
Gordon Setter
,
Saluki
,
Schapendoes (Dutch Sheep Dog)
,
Small Swiss Hound
,
Tibetan Terrier
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Border Collie, English Setter, Saluki, and Tibetan Terrier.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
The clinical course includes increasing levels of agitation and possible outbursts of aggression, hallucinations, hyperactivity and epileptic fits. Most animals lose their ability to coordinate everyday muscular activities. As the extent of neurodegeneration increases, all affected dogs develop psychological abnormalities and ataxia.
|
|
|
|
Description |
The mutation-based gene test and its advantages
The genetic defect leading to the disease has been identified. By DNA testing, the responsible mutation can be shown directly. This method provides a very high accuracy test and can be done at any age. It offers the possibility to distinguish not only between affected and clear dogs, but also to identify clinically healthy carriers. This is an essential information for controlling the disease in the breed, as carriers are able to spread the disease in the population, but can not be identified by means of common laboratory diagnostic.
* Please note 2 different variants can be detected in each of the following breeds: Australian Shepherd and Miniature American Shepherd, Australian Cattle Dog, and Dachshunds, and therefore we have a separate listing combining the two relevant tests for each breed at a discounted price:
please check here.
We also offer NCL in American Staffordshire Terrier. which is run by a partner lab
|
|
|
|
Trait of Inheritance |
Ceroid lipofuscinosis in Border Collies and American Bulldogs is an inherited autosomal recessive trait. This means that a dog can be clear (homozygous normal), affected, or a carrier (heterozygous). The carriers can spread the diseased gene in the population. Therefore, reliable information on non-affected dogs is the key to controlling this disease.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Neuronal Ceroid Lipofuscinosis ( CL / NCL ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / NCL [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Neuronal Ceroid Lipofuscinosis ( CL / NCL ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: NCL / NCL [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Neuronal Ceroid Lipofuscinosis ( CL / NCL ) and will pass the mutant gene to its entire offspring
|
|
|
|
|
6 ) Trapped Neutrophil Syndrome ( TNS )
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Border Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
TNS is a hereditary disease where the bone marrow produces neutrophils (white cells) but is unable to effectively release them into the bloodstream. Affected puppies have an impaired immune system and will eventually die from infections they cannot fight.
Once thought to be rare, it is now believed that the disease goes undiagnosed for several reasons. Even when looking, blood counts do not always show lower than normal neutrophil (white blood cell) counts. Because it is an autoimmune-deficiency disease, young puppies present a variety of symptoms depending upon what infections they fall prone to. Thus many cases are not properly diagnosed and have just been thought to be "fading puppies".The age of onset varies depending on which infection is involved at the time. Most puppies become ill before leaving the breeder but some do not have symptoms until later. Most affected puppies die or are euthanised by about 4 months of age.
|
|
|
|
Description |
The genetic defect leading to the disease has been identified. By DNA testing, the responsible mutation can be shown directly. This method provides a very high accuracy test and can be done at any age. It offers the possibility to distinguish not only between affected and clear dogs, but also to identify clinically healthy carriers. This is an essential information for controlling the disease in the breed, as carriers are able to spread the disease in the population, but can not be identified by means of common laboratory diagnostic.
|
|
|
|
Trait of Inheritance |
TNS follows an autosomal recessive mode of inheritance.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Trapped Neutrophil Syndrome ( TNS ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / TNS [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Trapped Neutrophil Syndrome ( TNS ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: TNS / TNS [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Trapped Neutrophil Syndrome ( TNS ) and will pass the mutant gene to its entire offspring
|
|
|
|
|
7 ) Glaucoma and Goniodysgenesis (GGD)
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Border Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
Canine Glaucoma and Goniodysgenesis (GGD) in Border Collie
Goniodysgenesis is a developmental abnormality of the eye's anterior chamber which is strongly associated with glaucoma and blindness. This abnormality affects the drainage pathway and so fluid in the eye isn't drained properly leading to increase in the pressure of fluid inside the eye (Intra Ocular Pressure IOP), which damages the optic nerve and may cause loss of vision.
GGD is caused by a mutation in Olfactomedin-like 3 (OLFML3) which has recently been identified by researchers at the The Roslin Institute and Royal (Dick) School of Veterinary Studie and Mater Research Institute-UQ.
Symptoms include:severe pain in the eye, watery eye, high sensitivity to light, winking spasms, dilated pupils, raised third eyebrow, etc
A DNA test is now available at Laboklin and will help you in finding out if a dog is genetically clear, carrier or affected and plan breeding so that you avoid having affected puppies.
|
|
|
|
Trait of Inheritance |
Autosomal recessive trait of inheritance.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Glaucoma and Goniodysgenesis (GGD). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / GGD [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Glaucoma and Goniodysgenesis (GGD) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: GGD / GGD [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Glaucoma and Goniodysgenesis (GGD) and will pass the mutant gene to its entire offspring
|
|
|
|
|
8 ) Raine Syndrome ( Dental hypomineralization )
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Border Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
The disease is characterized by symptoms similar to those found in craniomadibular osteopathy (CMO). Affected dogs exhibit severe tooth wear resulting in pulpitis and the removal of most teeth. These symptoms result by hypomineralization of the teeth and weakened enamel.
|
|
|
|
Trait of Inheritance |
.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Raine Syndrome ( Dental hypomineralization ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / RS [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Raine Syndrome ( Dental hypomineralization ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: RS / RS [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Raine Syndrome ( Dental hypomineralization ) and will pass the mutant gene to its entire offspring
|
|
|
|
|
Price
for the above 8 tests
|
£ 144.00 (including VAT)
|
|
|
|
|
|
|