LABOKLIN (UK)| Genetic Diseases | Dogs| Old English Sheepdog (Bobtail) DNA bundle: DM Exon2 + EIC + HA + MDR1 + PCD
prices in Pound
 
  Home
  News and offers
  Genetic Diseases
Dogs
Cats
Horses
Cattle
Pigs
Rabbit
Sheep
  Coat Colours / Length
  Identity / Parentage
  Reptiles & Amphibians
  Avian Tests
  Profiles / Screening
  Infectious Diseases
  Organs / Parameters
  Allergy testing
  Pathology
  Downloads & Order
  Order Kit Online
  About Us
  Crufts & Shows
  Contact Us
  Kennel Club ABS
  facebook
 
**NEW**



Maine Coon Special offer:
8 DNA tests for just £84.95 incl VAT
Maine Coon 8 DNA tests bundle (HCM, SMA, PKDef, Poly, b, b1, cb, cs) 
**NEW**



Bengal Special offer:
4 Bengal Specific DNA tests for just £72.00 incl VAT
Bengal DNA bundle (rdAc-PRA + b-PRA + PK-Def + Blood Groups) 



British Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
British Short / Long Hair DNA bundle (PKD + pd-PRA + ALS + Blood Groups)



Burmese Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Burmese DNA bundle (Hypokalemia (BHK) + Head Defect + Gangliosidosis (GM2) + Blood Groups



Birman Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Birma DNA bundle (PKD + pd-PRA + Hypotrichiose + MPS6 + Blood Groups)



Maine Coon Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Maine Coon DNA bundle (HCM1 + SMA + PK-Def + F11 + Blood Groups)



Ragdoll Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood Groups)



Norwegian Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood Groups)



Feline Special Offer:
8 cat DNA tests for just £84.95 including VAT
HCM, HCR, GSD4, PKD, PRA, PK-Def., SMA, Blood Groups

new test:      Paradoxical Pseudomyotonia (PP) in English Cocker and English Springer Spaniels  
new test:      Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
new test:      Lysosomal Storage Diseases (LSD) in Dalmatian and Doberman  
new Kennel Club DNA testing schemes with LABOKLIN:
   Osteochondrodysplasia (OCD) / Skeletal Dwarfism in Miniature Poodles
  DINGS2: Deafness with Vestibular Dysfunction in Doberman
   Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel


Old English Sheepdog (Bobtail) DNA bundle: DM Exon2 + EIC + HA + MDR1 + PCD

Test number: 8633

Price: £ 138.00 (including VAT) for all 5 tests

  1 ) Degenerative Myelopathy / Degenerative Radiculomyelopathy) DM (Exon 2) / SOD1

Breeds
Airedale Terrier , Alaskan Malamute , All Dog Breeds , American Eskimo , Bernese Mountain Dog , Bloodhound , Borzoi (Russian Wolfhound) , Boxer , Cavalier King Charles Spaniel , Canaan Dog , Welsh Corgi (Cardigan) , Chesapeake Bay Retriever , Cockapoo (English) , Cockapoo (American) , Fox Terrier , French Bull Dog , German Shepherd , Glen Of Imaal Terrier ( GIT ) , Golden Retriever , Goldendoodle , Pyrenean Mountain Dog (Great Pyrenees) , Hovawart , Pumi ( Hungarian Pumi / Pumik ) , Jack Russell Terrier , Kerry Blue Terrier , Labradoodle , Labrador Retriever , Lakeland Terrier , Northern Inuit (Tamaskan / British Timber Dog) , Nova Scotia Duck tolling Retriever ( NSDTR / Toller) , Pembroke Welsh Corgi , Poodle , Pug , Rhodesian Ridgeback , Rough Collie , Soft Coated Wheaten Terrier , Shetland Sheepdog (Sheltie) , Smooth Collie , Utonagan , Wire Fox Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Chesapeake Bay Retriever, French Bull Dog, German Shepherd, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Rough Collie, and Smooth Collie.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Canine degenerative myelopathy (also known as chronic degenerative radiculomyelopathy) is a progressive disease of the spinal cord in older dogs. The disease has an insidious onset typically between 7 and 14 years of age. It begins with a loss of coordination (ataxia) in the hind limbs. As of July 15, 2008 the mutated gene responsible for DM has been found present in 43 breeds including German Shepherds, Boxers, Chesapeake Bay Retrievers, Rhodesian Ridgebacks, and both breeds of Welsh Corgis. The disease is chronic and progressive, and resulting in paralysis.
Clinical Signs
Degenerative myelopathy initially affects the back legs and causes muscle weakness and loss, and lack of coordination. These cause a staggering effect that may appear to be arthritis. The dog may drag one or both rear paws when it walks. This dragging can cause the nails of one foot to be worn down. The condition may lead to extensive paralysis of the back legs. As the disease progresses, the animal may display symptoms such as incontinence and has considerable difficulties with both balance and walking. If allowed to progress, the animal will show front limb involvement and extensive muscle atrophy. Eventually cranial nerve or respiratory muscle involvement necessitates euthanasia. Progression of the disease is generally slow but highly variable. The animal could be crippled within a few months, or may survive up to three years
Description

SOD1-Gene

Please note that Exon 2 can be found in all dog breeds, there is another DM mutation in Exon 1 which can only be found in Bernese Mountain Dog, click here for more information.

For bernese Mountain Dog we have a special offer for both Exon 1 and Exon 2 at reduced price, click here for more details.

Trait of Inheritance
Tow alleles are invloved in Degenerative Myelopathy, A and G, therefore a test result can be A/A, A/G, or G/G.

Mode of inheritance is autosomal recessive with variable penetrance;

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Carrier

Genotype: N / DM (Exon 2) [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Affected

Genotype: DM (Exon 2) / DM (Exon 2) [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog may or may not show signs of the disease
Sample Requirements
Buccal Swabs or 0.5 - 1 ml blood in EDTA Blood Tube
Turnaround
2-3 weeks

  2 ) Exercise Induced Collapse ( EIC )

NEW EUROPEAN EXCLUSIVE LICENSE 10/12/2008
We are pleased to announce that LABOKLIN has now an Exclusive License to offer the EIC DNA test (Exercise Induced Collapse) in Labrador Retriever in Europe.

Breeds
Boykin Spaniel , Chesapeake Bay Retriever , Clumber Spaniel , Curly Coated Retriever , German Wirehaired Pointer , Labradoodle , Labrador Retriever , Old English Sheepdog (Bobtail) , Pembroke Welsh Corgi .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Clumber Spaniel, Curly Coated Retriever, and Labrador Retriever.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Exercise Induced Collapse is an inherited condition that affects Labrador Retriever and related breeds. Affected dogs can endure mild to moderate exercise but after 5 to 20 minutes of heavy exercise with extreme excitement, the dog shows weakness and then collapse. Severely affected dogs may collapse whenever they are exercised to this extend – other dogs only exhibit collapse episodes sporadically.

Signs of EIC are not typically seen until the dog begin intense training. First symptoms are usually noted between 5 months and 3 years of age. However, it is confirmed that some affected dogs did not have collapse episodes until as late as age 10.

Clinical Signs
The first symptom noted during an episode is usually a rocking or forced gait. The rear limbs then become weak and unable to support weight. Many affected dogs will continue to run while dragging their back legs. Some dogs appear uncoordinated, especially in the rear limbs, with a wide-based, long, loose stride rather than the sort stiff strides typically associated with muscle weakness. In some dogs the rear limb collapse progresses to forelimb weakness and occasionally to a total inability to move. Some dogs appear to have a loss of balance and may fall over, particularly as they recover from complete collapse. Most collapsed dogs are totally conscious and alert, still trying to run and retrieve, but as many as 25% of affected dogs will appear stunned or disoriented during the episode.












Description

The the genetic mutation responsible for susceptibility to EIC was identified at the University of Minnesota (EE Patterson, JR Mickelson, KM Minor).

This is a mutation based test that classifies dogs as Clear, Carriers and Affected. Clear and Carrier dogs will not show signs of EIS, however carriers can pass the mutation to their offspring. The test provides reliable information to dog breeders and owners that enable them to control the spread of the mutation in the breed.

Trait of Inheritance
EIC follows an autosomal recessive trait of inheritance.








Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Exercise Induced Collapse ( EIC ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / EIC [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Exercise Induced Collapse ( EIC ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: EIC / EIC [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Exercise Induced Collapse ( EIC ) and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  3 ) MDR1 Gene Varian / Ivermectin Sensitivity * (ABCB1)

Breeds
American White Shepherd , Australian Shepherd , Bobtail , Border Collie , Collie , Elo , English shepherd , German Shepherd , Kromfohrländer , Longhaired Whippet , McNab Shepherd (McNab Border Collie) , Miniature American Shepherd , Old English Sheepdog (Bobtail) , Rough Collie , Shetland Sheepdog (Sheltie) , Silken Windhound , Smooth Collie , Waeller (Wäller) , White Swiss Shepherd ( Berger Blanc Suisse ) .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Australian Shepherd, Border Collie, Rough Collie, Shetland Sheepdog (Sheltie), and Smooth Collie.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
MDR1 is a genetic disorder found in many dog breeds. Affected dogs, when treated with certain common drugs such as Ivermectin and loperamide (Imodium), are unable to pump out these drugs from the brain resulting in poisoning and neurologic symptoms ranging from tremors, anorexia and excess salivation to blindness, coma and even death. Some of these drugs such as Ivermectins, which vets prescribe extensively for the treatment of parasite infections, are able to cause toxicity at 1/200th of the dose required to cause toxicity in healthy dogs.


Scientists discovered that these dogs lack a protein (P-Glycoprotein), which is responsible for pumping out many drugs and toxins from the brain, and that affected dogs show signs of toxicity because they are unable to stop drugs from permeating their brains. Researchers have identified that this condition is due to a mutation in the multi-drug resistance gene [MDR1].
 

LIST OF DRUGS THAT CAUSE SENSITIVITY TO DOGS WITH MDR1 MUTATION

Class A Do not use these drugs in dogs with MDR1 Gene Defect

Ivermectine substances "Anti parasites": (Diapec®, Ecomectin®, Equimax®, Eqvalan®, Ivomec®, Noromectin®, Paramectin®, Qualimec®, Sumex®, Virbamec®) 

Doramectine substances "Anti parasites":  (Dectomax® )

Loperamide substances "ant diarrheal ": (Imodium®)

Moxidectine substances "Anti Parasites" (Cydectin®, Equest®) 

Class B

Use only under close control of veterinarian

Cytostatics  "Chemotherapy": (Vinblastine, Vincristine, Doxorubicine, Paclitaxel, Docetaxel, Methotrexat, Vincristine)

Immunosuppressive: (Cyclosporine A)

Heart glycosides: (Digoxine, Methyldigoxine)

Opioids: (Morphium)

Antiarrhythmics: (Verapamil, Diltiazem, Chinidine)
 

Antiemetics (Ondansetron, Domperidon, Metoclopramide )
 

Antibiotics (Sparfloxacin, Grepafloxacin, Erythromycin)
 

Antihistamin (Ebastin)
 

Glucocorticoid (Dexamethason)

Acepromazine (tranquilizer and pre-anesthetic agent) *

Butorphanol "analgesic and pre-anesthetic agent" *

Other drugs: Etoposide, Mitoxantrone, Ondansetron, Paclitaxel, Rifampicin 

Class C  Can be used only in the permitted application form and dose!   Selamectin (Stronghold®), Milbemax®  and Advocate® .

* In dogs with the MDR1 mutation, acepromazine and butorphanol tend to cause more profound and prolonged sedation in dogs . It is recommended to reduce the dose by 25% in dogs heterozygous for the MDR1 mutation (MDR1 / N) and by 30-50% in dogs homozygous for the MDR1 mutation (MDR1 / MDR1).

Description

This is a mutation-based gene test, which offers many advantages over other methods

The MDR1 gene variant can be detected, using molecular genetic testing techniques. By DNA testing the mutation can be shown directly. The testing is carried out by state of the art laboratory methods and therefore provides a very high accuracy. In general DNA tests can be done at any age. These tests identify both affected and carrier animals. The mutation can be shown directly, what clearly identifies homozygous affected animals. The genetic test offers the unique possibility to identify Ivermectin sensitive animals prior to treatment with Ivermectin and other drugs (see list).

* partner lab

Please note drug list may not be up to date. The WSU Veterinary CLinical Pharmacology Lab may have a more updated list https://vcpl.vetmed.wsu.edu/problem-drugs. Please note that there maybe other problem drugs which may have not been yet identified.

Trait of Inheritance
Dogs that are homozygous for the mutation display, due to a non-functional transporter the ivermectin sensitive phenotype. They can show increased absorption of ivermectin and other substrates e.g. Digoxin, Vincristine, Doxorubicin, Cyclosporin A, Grepafloxacin, Dexamethasone and Loperamide (See list of drugs). Heterozygous animals (carriers) may show sensitivity to avermectins and other drugs. They are able to propagate the responsible mutation throughout the population and it is therefore important that carrier animals are detected prior to breeding.
Carriers mayhave sensitivity and should be treated with care

Inheritance : AUTOSOMAL trait
 
Further reading
Canine MDR1 MutationAcrobat file
WSU Problem Drug listHTML file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  4 ) Primary ciliary dyskinesia (PCD)

Breeds
Alaskan Malamute , Bobtail , Old English Sheepdog (Bobtail) .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Old English Sheepdog (Bobtail).

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Primary ciliary dyskinesia (PCD) is an autosomal-recessive genetic disease characterized by recurrent infections of the respiratory tract as well as reduced male fertility. Around 50% of the affected dogs develop situs inversus (Kartagener syndrome). The underlying cause is a motility defect in the respiratory cilia responsible for airway clearance and in the flagella responsible for propelling sperm cells.

In Old English Sheepdod the disease is caused by a mutation in the CCDC39 gene, while in Alaskan Malamute it is caused by mutation in NME5 gene

Clinical Signs
Symptoms include chronic inflammation of upper and lower airways, coughing, nasal discharge, wheezing, bronchopneumonia and inflamation of the ear.
Trait of Inheritance
Autosomal recessive trait of inheritance

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Primary ciliary dyskinesia (PCD). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / PCD [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Primary ciliary dyskinesia (PCD) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: PCD / PCD [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Primary ciliary dyskinesia (PCD) and will pass the mutant gene to its entire offspring
 
Further reading
PCD in Alaskan Malamutehtml file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  5 ) Hereditary Ataxia (HA)

Breeds
Australian Shepherd , Bobtail , Gordon Setter , Miniature American Shepherd , Norwegian Buhund , Norwegian Elkhound , Old English Sheepdog (Bobtail) .
The Disease
Hereditary Ataxia (HA) is a neurodegenerative disease that affect the cerebellum causing progressive gait disturbance in both humans and dogs.

Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are similar to hereditary ataxias in humans.

The cause of the disease has been identified, it is a mutation in the gene associated with the process of autophagy by which cell proteins and organelles are removed and recycled and its critical role in maintenance of the continued health of cells is becoming clear. The defect in the autophagy process results in neuronal death.

Description

The disease is caused by a mutation in the RAB24 gene

Clinical symptomps begins in juvenile to young adult dogs aged from six months to four years. Dogs develop pronounced hypermetria, a truncal sway and intention tremor, and signs progress to cause severe gait disturbances. Cerebellar atrophy can be identified by magnetic resonance imaging (MRI) and histopathological findings include loss of Purkinje cell, granule cell and molecular layer neurons causing atrophy of the cerebellar cortex. In more detailed work on Gordon Setters, profound changes in cerebellar neurotransmitter levels and synapses have been described, along with the development of Purkinje neuron axonal spheroids.

Trait of Inheritance
.

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Hereditary Ataxia (HA). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / HA [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Hereditary Ataxia (HA) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: HA / HA [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Hereditary Ataxia (HA) and will pass the mutant gene to its entire offspring
Sample Requirements
Buccal Swabs or 0.5 - 1 ml blood in EDTA Blood Tube
Turnaround
2-3 weeks
Price for the above 5 tests
£ 138.00 (including VAT)

To order:




new test:
Androgen Insensitivity Syndrome (AIS)
new test:
ACAN Dwarfism (Chondrodysplasia)
new test:
Predictive Height Test ( LCORL)
new test:

Tractability
new test:
Coat colour Sunshire Dilution



See also:

 
 
Home   |   Genetic Diseases  |   Coat Colours / Length  |   Identity / Parentage  |   Reptiles & Amphibians  |   Avian Tests  |   Profiles / Screening  |   Infectious Diseases  |   Organs / Parameters  |   Allergy testing  |   Pathology  |   About us  |   Contact Us
LABOKLIN GmbH & Co. KG
ISO / DIN 17025 Accredited Laboratory
© 2007-2023 Laboklin (UK)
Unit 20, Wheel Forge Way, Trafford Park, Manchester, M17 1EH
Tel. 0161 282 3066