|
Australian Cattle Dog bundle (DM Exon2 + NCL + PLL + prcd-PRA* + rcd4-PRA + Cystinuria)
Test number: 8658
Price: £ 132.00 (including VAT) for all 6 tests
|
|
|
|
1 ) Degenerative Myelopathy / Degenerative Radiculomyelopathy) DM (Exon 2) / SOD1
|
Breeds
|
Airedale Terrier
,
Alaskan Malamute
,
All Dog Breeds
,
American Eskimo
,
Bernese Mountain Dog
,
Bloodhound
,
Borzoi (Russian Wolfhound)
,
Boxer
,
Cavalier King Charles Spaniel
,
Canaan Dog
,
Welsh Corgi (Cardigan)
,
Chesapeake Bay Retriever
,
Cockapoo (English)
,
Cockapoo (American)
,
Fox Terrier
,
French Bull Dog
,
German Shepherd
,
Glen Of Imaal Terrier ( GIT )
,
Golden Retriever
,
Goldendoodle
,
Pyrenean Mountain Dog (Great Pyrenees)
,
Hovawart
,
Pumi ( Hungarian Pumi / Pumik )
,
Jack Russell Terrier
,
Kerry Blue Terrier
,
Labradoodle
,
Labrador Retriever
,
Lakeland Terrier
,
Northern Inuit (Tamaskan / British Timber Dog)
,
Nova Scotia Duck tolling Retriever ( NSDTR / Toller)
,
Pembroke Welsh Corgi
,
Poodle
,
Pug
,
Rhodesian Ridgeback
,
Rough Collie
,
Soft Coated Wheaten Terrier
,
Shetland Sheepdog (Sheltie)
,
Smooth Collie
,
Utonagan
,
Wire Fox Terrier
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Chesapeake Bay Retriever, French Bull Dog, German Shepherd, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Rough Collie, and Smooth Collie.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
Canine degenerative myelopathy (also known as chronic degenerative radiculomyelopathy) is a progressive disease of the spinal cord in older dogs. The disease has an insidious onset typically between 7 and 14 years of age. It begins with a loss of coordination (ataxia) in the hind limbs. As of July 15, 2008 the mutated gene responsible for DM has been found present in 43 breeds including German Shepherds, Boxers, Chesapeake Bay Retrievers, Rhodesian Ridgebacks, and both breeds of Welsh Corgis. The disease is chronic and progressive, and resulting in paralysis.
|
|
|
|
Clinical Signs |
Degenerative myelopathy initially affects the back legs and causes muscle weakness and loss, and lack of coordination. These cause a staggering effect that may appear to be arthritis. The dog may drag one or both rear paws when it walks. This dragging can cause the nails of one foot to be worn down. The condition may lead to extensive paralysis of the back legs. As the disease progresses, the animal may display symptoms such as incontinence and has considerable difficulties with both balance and walking. If allowed to progress, the animal will show front limb involvement and extensive muscle atrophy. Eventually cranial nerve or respiratory muscle involvement necessitates euthanasia.
Progression of the disease is generally slow but highly variable. The animal could be crippled within a few months, or may survive up to three years
|
|
|
|
Trait of Inheritance |
Tow alleles are invloved in Degenerative Myelopathy, A and G, therefore a test result can be A/A, A/G, or G/G.
Mode of inheritance is autosomal recessive with variable penetrance;
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will show signs of the Degenerative Myelopathy
Carrier
Genotype: N / DM (Exon 2) [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will show signs of the Degenerative Myelopathy
Affected
Genotype: DM (Exon 2) / DM (Exon 2) [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog may or may not show signs of the disease
|
|
|
|
|
2 ) Neuronal Ceroid Lipofuscinosis Combi ( NCL Combi )
|
Note |
This test detects 2 mutations depending on the selected breed:
- In Australian Shepherd and Miniature American Shepherd:
2 breed specific variants are detected (standard and adult onset)
- In Australian Cattle Dog : 2 breed specific variants are detected (standard and adult onset)
- In Dachshunds : 2 breed specific variants are detected (standard and adult onset)
Please note that other breeds are known to be affected by other NCL variants, you can check
NCL in other breeds
|
|
|
|
Breeds
|
Australian Cattle Dog
,
Australian Shepherd
,
Dachshund
,
Miniature Wire haired Dachshund
,
Miniature American Shepherd
,
Miniature Long Haired Dachshund
,
Miniature Smooth Haired Dachshund
,
Standard Long Haired Dachshund
,
Standard Smooth Haired Dachshund
,
Standard Wirehaired Dachshund
.
|
|
|
The Disease |
The clinical course includes increasing levels of agitation and possible outbursts of aggression, hallucinations, hyperactivity and epileptic fits. Most animals lose their ability to coordinate everyday muscular activities. As the extent of neurodegeneration increases, all affected dogs develop psychological abnormalities and ataxia.
|
|
|
|
Description |
The mutation-based gene test and its advantages
The genetic defect leading to the disease has been identified. By DNA testing, the responsible mutation can be shown directly. This method provides a very high accuracy test and can be done at any age. It offers the possibility to distinguish not only between affected and clear dogs, but also to identify clinically healthy carriers. This is an essential information for controlling the disease in the breed, as carriers are able to spread the disease in the population, but can not be identified by means of common laboratory diagnostic. * Please note that NCL in American Staffordhsire Terrier is run by a partner lab
|
|
|
|
Trait of Inheritance |
Ceroid lipofuscinosis in Border Collies and American Bulldogs is an inherited autosomal recessive trait. This means that a dog can be clear (homozygous normal), affected, or a carrier (heterozygous). The carriers can spread the diseased gene in the population. Therefore, reliable information on non-affected dogs is the key to controlling this disease.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Neuronal Ceroid Lipofuscinosis Combi ( NCL Combi ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / NCL [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Neuronal Ceroid Lipofuscinosis Combi ( NCL Combi ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: NCL / NCL [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Neuronal Ceroid Lipofuscinosis Combi ( NCL Combi ) and will pass the mutant gene to its entire offspring
|
|
|
|
|
3 ) Primary Lens Luxation (PLL)
|
Breeds
|
American Eskimo
,
American Hairless Terrier
,
Australian Cattle Dog
,
Chinese Crested
,
Danish Swedish Farmdog
,
Fox Terrier
,
German Hunting Terrier
,
Heide Terrier
,
Jack Russell Terrier
,
Jagd Terrier
,
Lakeland Terrier
,
Lancashire Heeler
,
Lucas Terrier
,
Miniature Bull Terrier
,
Norfolk Terrier
,
Norwich Terrier
,
Parson Russell Terrier (PRT)
,
Patterdale Terrier
,
Pug
,
Rat Terrier
,
Sealyham Terrier
,
Teddy Roosevelt Terrier
,
Tenterfield Terrier
,
Tibetan Terrier
,
Toy Fox Terrier
,
Volpino Italiano
,
Welsh Terrier
,
Westphalia Terrier
,
Wire-haired Fox Terrier
,
Yorkshire Terrier
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Chinese Crested, Jack Russell Terrier, Lancashire Heeler, Miniature Bull Terrier, Parson Russell Terrier (PRT), Sealyham Terrier, Tibetan Terrier, and Welsh Terrier.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
The zonula fibres secure the position of the lens. Dogs affected from PLL have painful glaucomas and blindness due to a dislocation of the lens due to a breakdown or disintegration of the zonula fibres. PLL can be inherited or acquired. Therefore the disease might also affect genetically free dogs. First clinical signs of the inherited form of PLL are detectable at the very young age of 20 months. A complete lens luxation typically occurs at the age of 3 to 8 years.
|
|
|
|
Trait of Inheritance |
Recently, Cathryn Mellersh and colleagues (Farias et al., 2010) identified a mutation in the gene ADAMTS17 that is responsible for the development of inherited PLL.
The mode of inheritance of PLL is autosomal recessive. This means that PLL-affected dogs receive one mutated gene (allel) from the mother as well as from the father. Hence, the parents need to carry at least one mutated allel.
In most cases heterozygous carriers are healthy. However, it is estimated that about 2 – 20 % of the carriers will develop PLL.
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
A dog like this is healthy and does not carry the mutated allel responsible for PLL disease. Offspring
of this dog will not get the mutated allel.
Carrier
Genotype: N / PLL [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
The dog has one copy of the normal allel and in addition one copy of the mutated allel. Carriers have
a low risk of developing PLL, however they will pass on the mutation to their offspring. In most cases heterozygous carriers are healthy. However, it is estimated that about 2 – 20 % of the carriers will develop PLL
Affected
Genotype: PLL / PLL [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog has two copies of the mutated allel. Affected dogs have a high risk of developing PLL during
their lifetime. The mutated allel will be passed to 100% of the offspring. It is recommended to
examine the eyes of genetically affected dogs every 6 months by a specialist in order to detect the
clinical signs of PLL as early as possible.
|
|
|
|
|
4 ) Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127)
|
|
Kennel Club: results of this test is accepted by the Kennel Club
|
|
|
|
Breeds
|
All Dog Breeds
,
American Cocker Spaniel
,
American Eskimo
,
Australian Cattle Dog
,
Australian Shepherd
,
Australian Stumpy Tail Cattle Dog
,
Australian Stumpy tail cattle Dog
,
Barbet (French Water Dog)
,
Bearded Collie
,
Bolognese
,
Bolonka Zwetna (Tsvetnaya Bolonki)
,
Cavapoo
,
Chesapeake Bay Retriever
,
Chihuahua
,
Chinese Crested
,
Cockapoo (English)
,
Cockapoo (American)
,
Cocker Spaniel
,
Dwarf poodle
,
English Cocker Spaniel
,
English shepherd
,
Entlebuch Mountain dog
,
Finnish Lapphund
,
German Spitz (Mittel)
,
Giant Schnauzer
,
Golden Retriever
,
Goldendoodle
,
Jack Russell Terrier
,
Japanese Chin
,
Karelian Bear Dog
,
Kuvasz
,
Labradoodle
,
Labrador Retriever
,
Lagotto Romagnolo
,
Lapponian Herder
,
Markiesje
,
Miniature Poodle
,
Miniature American Shepherd
,
Norwegian Elkhound
,
Nova Scotia Duck tolling Retriever ( NSDTR / Toller)
,
Parson Russell Terrier (PRT)
,
Poodle
,
Portuguese Waterdog
,
Schipperke
,
Australian Silky Terrier
,
Spanish Water Dog
,
Standard Poodle
,
Swedish Lapp Hund
,
Toy Poodle
,
Waeller (Wäller)
,
Yorkshire Terrier
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in American Cocker Spaniel, Australian Cattle Dog, Australian Shepherd, Barbet (French Water Dog), Chesapeake Bay Retriever, Chinese Crested, Cocker Spaniel, English Cocker Spaniel, Entlebuch Mountain dog, Finnish Lapphund, Giant Schnauzer, Labrador Retriever, Miniature Poodle, Norwegian Elkhound, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Portuguese Waterdog, Spanish Water Dog, Standard Poodle, and Toy Poodle.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
|
Progressive retinal atrophy (PRA) as an inherited disease occurs in many dog breeds and also in different forms. The form of progressive rod-cone degeneration (prcd-PRA) is a photoreceptor degeneration in dogs with varying ages of onset. This genetic disorder causes the degeneration of retinal cells in the eye: firstly, rod cells are affected, thus leading to progressive night blindness. Secondly, degeneration of the cone cells results in complete blindness of the dog, even in full light situations during the day.
Age of onset of clinical symptoms is typically in early adolescence or early adulthood. However, the onset of the disease may vary among different dog breeds.
Since diagnosis of retinal diseases in dogs may prove difficult, the genetic test on prcd-PRA helps to diagnose a specific disease and is also a useful tool for breeders to eliminate the mutated gene from the dog population.
Please note that Lapponian Herder can be affected two other forms of PRA, the IFT122-PRA and the Canine Multi-Focal Retinopathy (CMR) which is caused by a mutation in the BEST1-gene.
|
|
|
|
Trait of Inheritance |
The mutation in the PRCD gene which has been suggested to cause prcd-PRA has recently been published by the group of Gustavo D. Aguirre at the University of Pennsylvania, USA, and could be found in several dog breeds.
Prcd-PRA is inherited as an autosomal recessive trait. So there are three conditions a dog can be: it can be clear (genotype N/N or homozygous normal) meaning that it does not carry the mutation and will not develop the prcd-form of PRA. Since it also cannot pass the mutation onto its offspring, it can be mated to any other dog.
A dog which has one copy of the PRCD gene with the mutation and one copy without the mutation is called a carrier or heterozygous (genotype N/PRA); while it will not be affected by prcd-PRA, it can pass the mutation onto its offspring and should therefore only be mated to clear dogs.
Dogs that develop this form of PRA have two PRCD gene copies with the mutation (genotype PRA/PRA or homozygous affected); they will always pass the mutated gene onto their offspring and should also be mated only to clear dogs..
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / PRA [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: PRA / PRA [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127) and will pass the mutant gene to its entire offspring
|
|
|
|
|
5 ) Progressive retinal atrophy ( rcd4-PRA) / LOPRA
|
Breeds
|
Australian Cattle Dog
,
Bolonka Zwetna (Tsvetnaya Bolonki)
,
Cavapoo
,
Cockapoo (English)
,
Cockapoo (American)
,
Dwarf poodle
,
English Setter
,
Gordon Setter
,
Irish Red and White Setter
,
Irish Setter (Red Setter)
,
Labradoodle
,
Miniature Poodle
,
Old Danish Pointing Dog
,
Polish Lowland sheepdog
,
Poodle
,
Small Munsterlander
,
Standard Poodle
,
Tatra Shepherd Dog (POP)
,
Tibetan Terrier
,
Toy Poodle
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in English Setter, Gordon Setter, Irish Setter (Red Setter), Standard Poodle, and Tibetan Terrier.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
Progressive retinal atrophy (PRA) is a major hereditary cause of blindness in pedigree dogs as is its counterpart retinitis pigmentosa (RP) in humans. PRA shows genetic heterogeneity, as does RP, with several distinct forms already recognized and several more remaining to be investigated.
One can distinguish between late onset forms of PRA and early onset (whelp-age) dysplastic changes. The clinical and ophthalmologic signs of both forms are similar. Affected dogs suffer from bilateral Mydriasis, the reflection of the Tapetum lucidum is increased and the retinal vascular network appears atrophic.
The rcd4 PRA is another form of PRA, it is also known as LOPRA (Late Onset PRA) the age of onset of dogs with LOPRA varies from few years of age (2-3 years) up to old age (10-11 years)
|
|
|
|
Trait of Inheritance |
Autosomal recessive
|
Inheritance : AUTOSOMAL
RECESSIVE
trait
Sire
|
|
Dam
|
|
Offspring
|
|
|
|
|
|
clear
|
|
clear
|
|
100% clear
|
|
|
|
|
|
clear
|
|
carrier
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
clear
|
|
affected
|
|
100% carriers
|
|
|
|
|
|
carrier
|
|
clear
|
|
50% clear + 50%
carriers
|
|
|
|
|
|
carrier
|
|
carrier
|
|
25% clear + 25% affected
+ 50% carriers
|
|
|
|
|
|
carrier
|
|
affected
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
clear
|
|
100% carriers
|
|
|
|
|
|
affected
|
|
carrier
|
|
50% carriers + 50%
affected
|
|
|
|
|
|
affected
|
|
affected
|
|
100% affected
|
Clear
Genotype: N / N [ Homozygous normal ]
The dog is noncarrier of the mutant gene.
It is very unlikely that the dog will develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA. The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.
Carrier
Genotype: N / rcd4 [ Heterozygous ]
The dog carries one copy of the mutant gene and one
copy of the normal gene.
It is very unlikely that the dog will develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%. Carriers should only be bred to clear dogs. Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)
Affected
Genotype: rcd4 / rcd4 [ Homozygous mutant ]
The dog carries two copies of the mutant gene and
therefore it will pass the mutant gene to its entire offspring.
The dog is likely to develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA and will pass the mutant gene to its entire offspring
|
|
|
|
|
6 ) Cystinuria
|
Breeds
|
Australian Cattle Dog
,
Bull Mastiff
,
Bulldog (English)
,
English Mastiff
,
French Bull Dog
,
Labrador Retriever
,
Landseer
,
Mastiff
,
Miniature Pinscher
,
Newfoundland
.
|
|
|
Kennel Club
|
This test is part of the Official UK Kennel Club DNA Testing Scheme in Newfoundland.
for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published
as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s
microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying
features will not be recorded by the Kennel Club.
In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.
important:
When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.
|
|
|
The Disease |
Cystinuria is an inherited disorder caused by a defective transport of the amino acid cystine in the kidney tubules. Normally, cystine is filtered in the kidney and reabsorbed within the tubules, resulting in little cystine in the urine. Dogs with Cystinuria do not properly reabsorb the cystine (and a few other amino acids) in the kidney tubules, causing the urine to contain abnormally high levels of cystine. Cystine is insoluble in neutral pH or acidic urine, so excess urinary cystine results in the formation of crystals, which in turn can lead to formation of cystine calculi (stones) in the kidney and/or the bladder.
Dogs suffering from Cystinuria suffer repeated urinary tract inflammations, and are at risk for urinary blockage, which can, if not treated promptly, lead to kidney failure, bladder rupture, and death.
The average age of onset of clinical signs attributable to Cystinuria is about 4.8 years, but in Newfoundlands, signs appear as early as 6 months to 1 year, suggesting that Newfoundlands suffer from a more severe form of the disorder than other breeds.
Treatment of the Disease
Cystinuria in humans and dogs is generally treated with compounds that bind cystine and prevent crystal formation. The two most common drugs of choice are 2-mercaptopropionylglycine (MPG) and D-penicillamine. Little information is available on effective dosages for Newfoundlands, however, at least one study indicated that affected Newfoundlands require higher dosages of MPG than other dogs with Cystinuria. D-penicillamine was found to be of minimal benefit in reducing cystine calculi. This may relate to the fact that Newfoundlands suffer from a more severe form of the disorder than other breeds. Treatment with MPG can, in some cases, result in dissolution of cystine calculi, therefore eliminating the need for surgical removal of the stones. Unfortunately, some Newfoundlands are poorly responsive to medical treatment, suffering from recurring bouts of urinary dysfunction, and, oftentimes, requiring surgery to resolve urinary calculi. In male Mastiff, Continental, English, French and Olde English Bulldogs, we test for the marker which has strong association with the occurrence of Cystinuria. Only intact males which are tested homozygous for the marker are known to show symptoms of the disease. Females are not known to show symptoms. Due to high occurrence of the disease it is not recommended to remove carriers from breeding to avoid compromising the gene pool, but carrier should only be bred with clear animals. In affected dogs which are showing symptoms of the disease, castration can alleviate symptoms.
|
|
|
|
Description |
PCR
Cystinuria is a well-known hereditary metabolic disorder that leads to the formation of urinary stones and urinary obstruction. It has now been described in over 70 breeds. New studies have shown that this disease is very heterogeneous in terms of inheritance, mutation, frequency, severity, treatment and symptoms. A distinction is now made between the following subtypes of cystinuria affecting the different breeds:
The designation of type I cystinuria is used when the disease shows autosomal recessive inheritance, Type II when inheritance is autosomal dominant, and Type III for sex-limited/androgen-dependent inheritance (PH, UG, unpublished data). Additional types can be assigned if found. Specific mutations within each type should lead to phenotypes that are sufficiently similar that the same medical management and breeding advice applies to all cases within that type. Involvement of the SLC3A1 gene is indicated by adding - A, and similarly addendum of - B indicated involvement of mutations in SLC7A9.
- Newfoundland, Landseer, Labrador: Type I -A - autosomal recessive inheritance
- Miniature Pinscher: Type II - B - autosomal dominant inheritance
- Australian Cattle Dog: Type II - A - dominant inheritance
- Mastiff, Bulldogs, Kromfohrländer and Irish Terrier: Type III - androgen-dependent expression.
The type III genetic test is currently available for the variant which is known to be associated with symptoms of the disease in the Mastiff, Continental, English, French and Olde English Bulldog breeds since December 2016, however, there is currently no test available for Kromfohrländer and Irish Terrier. We test for a marker which is strongly associated with the occurrence of cystinuria. Type III Cystinuria affects only intact male dogs which have two copies of the cystinuria marker (cy/cy). Castration can alleviate the symptoms. Bitches do not show any symptoms but pass on the mutation to offspring.
Prevalence: between 8 and 16% of the dogs are genetically affected, while the carrier rate is between 32 and 50%. Targeted breeding reduces the frequency of the marker associated with the disease and is therefore desirable. Due to the high frequency of the gene, it is advisable that carriers should not taken out of breeding in order maintain the diversity of the gene pool. Dogs (Males or Females) tested Carriers (N/cy) should only be bred with clear dogs (N/N). Bitches tested genetically affected (homozygous for the mutation) (Cy/Cy) should not be removed from breeding but should only be bred with clear dogs (N/N).
Mating with free animals is possible without any problems. The Laboklin team will be happy to answer any further questions you may have.
|
|
|
|
Trait of Inheritance |
- in Newfoundland, Landseer, Labrador: autosomal recessive inheritance
- in Miniature Pinscher: autosomal dominant inheritance
- in Australian Cattle Dog: dominant inheritance. In this breed the disease in homozygous dogs (Cy / Cy) is more serious than in heterozygous dogs (N / Cy) .
- In Mastiff, Bulldogs, Kromfohrländer and Irish Terrier: androgen-dependent expression.
|
Inheritance : AUTOSOMAL
trait
|
|
|
|
|
|
|
Price
for the above 6 tests
|
£ 132.00 (including VAT)
|
|
|
|
|
|
|