LABOKLIN (UK)| Genetic Diseases | Cats| Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood groups)
prices in Pound
 
  Home
  News and offers
  Genetic Diseases
Dogs
Cats
Horses
Cattle
Pigs
Rabbit
Sheep
  Coat Colours / Length
  Identity / Parentage
  Reptiles & Amphibians
  Avian Tests
  Profiles / Screening
  Infectious Diseases
  Organs / Parameters
  Allergy testing
  Pathology
  Downloads & Order
  Order Kit Online
  About Us
  Crufts & Shows
  Contact Us
  Kennel Club ABS
  facebook
 
**NEW**



Maine Coon Special offer:
8 DNA tests for just £84.95 incl VAT
Maine Coon 8 DNA tests bundle (HCM, SMA, PKDef, Poly, b, b1, cb, cs) 
**NEW**



Bengal Special offer:
4 Bengal Specific DNA tests for just £72.00 incl VAT
Bengal DNA bundle (rdAc-PRA + b-PRA + PK-Def + Blood Groups) 



British Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
British Short / Long Hair DNA bundle (PKD + pd-PRA + ALS + Blood Groups)



Burmese Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Burmese DNA bundle (Hypokalemia (BHK) + Head Defect + Gangliosidosis (GM2) + Blood Groups



Birman Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Birma DNA bundle (PKD + pd-PRA + Hypotrichiose + MPS6 + Blood Groups)



Maine Coon Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Maine Coon DNA bundle (HCM1 + SMA + PK-Def + F11 + Blood Groups)



Ragdoll Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood Groups)



Norwegian Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood Groups)



Feline Special Offer:
8 cat DNA tests for just £84.95 including VAT
HCM, HCR, GSD4, PKD, PRA, PK-Def., SMA, Blood Groups

new test:      Paradoxical Pseudomyotonia (PP) in English Cocker and English Springer Spaniels  
new test:      Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
new test:      Lysosomal Storage Diseases (LSD) in Dalmatian and Doberman  
new Kennel Club DNA testing schemes with LABOKLIN:
   Osteochondrodysplasia (OCD) / Skeletal Dwarfism in Miniature Poodles
  DINGS2: Deafness with Vestibular Dysfunction in Doberman
   Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel


Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood groups)

Test number: 8719

Price: £ 72.00 (including VAT) for all 5 tests

  1 ) HCM 1 (Hypertrophic Cardiomyopathy)

Breed
Maine Coon .
The Disease

HCM 1 (Hypertrophic Cardiomyopathy) Mutation Meurs A31P

Hypertrophic cardiomyopathy (HCM) is a clinically heterogeneous myocardial disease and is the most common cardiac disease identified in domestic cats.

HCM is characterised by an increased left ventricular mass due to an increase in wall thickness of the heart, with papillary muscle hypertrophy and systolic anterior motion of the Mitral valves.

Subsequently, hypertrophy of the left heart chamber results in cardiac weakness and ultimately in heart failure.

Death by HCM can occur via three mechanisms:

(i) sudden cardiac death with arrhythmia and ventricular fibrillation,

(ii) heart failure with tachycardia, increased respiration, shortness of breath, pulmonary oedema and pleural effusion or

(iii) thrombus formation. Thrombi can form either in the left atrium due to abnormal blood circulation or in the heart chamber itself due to severe hypertrophy and cardiac weakness.

Atrial thrombi can brake free and reach the arterial blood circuit, thereby often causing blood congestion at the branching of pelvic and crural arteries with paralysis of the hind legs. Echocardiographic examination has so far been the only diagnostic tool for this disease. However, it can only identify affected cats with some years of age, when they already present first symptoms of HCM.

Description

DNA test

By DNA testing the mutation can be shown directly. The testing is carried out by state of the art laboratory methods and therefore provides a very high accuracy. In general DNA tests can be done at any age.

The test can be applied to Maine Coon and Maine Coon related cats, which were cross bred to Maine Coons. With this test we can diagnose the reported mutation, but by no means we can report on the presence/absence of the disease (especially in breeds where the correlation of HCM disease and the cited mutation is not proven). The results that are transmitted contain the information on presence/absence of the G to C mutation in the MYBPC gene exon 3 in the sample of the cat examined. We want to point out that there is still a small possibility of other mutations causing HCM which are not identified so far.

Trait of Inheritance

HCM is inherited as a single autosomal dominant condition. Heterozygous animals show all clinical signs of disease and can not live normal lives. They are able to propagate mutations throughout the population. Generally, 50% of a HCM positive cats offspring will inherit HCM. Homozygously affected animals for HCM show more severe clinical symptoms and will pass the defect gene onto all of their offspring.

Recently, a mutation in the MYBPC gene which is suggested to cause HCM in cats was found by Dr. Kathryn Meurs (Washington State University, USA). This mutation was found in most HCM affected cats but not in cats which were tested free by means of echocardiographic techniques. In our laboratory, we were also able to identify this mutation in european cats with HCM.


Inheritance : AUTOSOMAL DOMINANT trait
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  2 ) HCM (Hypertrophic Cardiomyopathy HCM3/HCR)

Breed
Ragdoll .
The Disease
Hypertrophic cardiomyopathy (HCM) is a clinically heterogeneous myocardial disease and is the most common cardiac disease identified in domestic cats. HCM is characterised by an increased left ventricular mass due to an increase in wall thickness of the heart, with papillary muscle hypertrophy and systolic anterior motion of the Mitral valves. Subsequently, hypertrophy of the left heart chamber results in cardiac weakness and ultimately in heart failure. Death by HCM can occur via three mechanisms: (i) sudden cardiac death with arrhythmia and ventricular fibrillation, (ii) heart failure with tachycardia, increased respiration, shortness of breath, pulmonary oedema and pleural effusion or (iii) thrombus formation. Thrombi can form either in the left atrium due to abnormal blood circulation or in the heart chamber itself due to severe hypertrophy and cardiac weakness. Atrial thrombi can brake free and reach the arterial blood circuit, thereby often causing blood congestion at the branching of pelvic and crural arteries with paralysis of the hind legs. Echocardiographic examination has so far been the only diagnostic tool for this disease. However, it can only identify affected cats with some years of age, when they already present first symptoms of HCM.
Description

By DNA testing the mutation can be shown directly. The testing is carried out by state of the art laboratory methods and therefore provides a very high accuracy. In general DNA tests can be done at any age. The test can be applied to Ragdoll cats. With this test we can diagnose the reported mutation, but by no means we can report on the presence/absence of the disease (especially in breeds where the correlation of HCM disease and the cited mutation is not proven). The results that are transmitted contain the information on presence/absence of the mutation in the MYBPC3 gene, in the sample of the cat examined. We want to point out that there is still a small possibility of other mutations causing HCM which are not identified so far.

Trait of Inheritance
HCM is inherited as a single autosomal dominant condition. Heterozygous animals can show clinical signs of disease and can not live normal lives. They are able to propagate mutations throughout the population. Generally, 50% of a HCM positive cats’ offspring will inherit HCM. Homozygously affected animals for HCM show more severe clinical symptoms and will pass the defect gene onto all of their offspring. Recently, a mutation in the MYBPC3 gene which is suggested to cause HCM in Ragdoll cats was found by Dr. Kathryn Meurs (Washington State University, USA). This mutation was found in most HCM affected Ragdolls but not in cats which were tested free by means of echocardiographic techniques. In our laboratory, we were also able to identify this mutation in european Ragdoll cats with HCM. In Ragdolls the mutation which is suggested to cause HCM is like in Maine coons in the MYBPC3- gene but in a different domain. The mutations in the two unrelated breeds presumably occurred independently.

Inheritance : AUTOSOMAL DOMINANT trait
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  3 ) PKD (Feline Polycystic Kidney Disease)

Breeds
Turkish Angora , British Shorthair (BSH) , Birman (Sacred cat of Burma) , British Longhair (BLH) , Chartreux , Colourpoint , Exotic Shorthair , Persian , Persian Ragdoll , Persian Related , Ragdoll , Ragdoll Related , Russian Blue , Scottish Fold Longhair , Scottish Fold Shorthair , Selkirk Rex Longhair , Selkirk Rex Shorthair .
The Disease
Feline polycystic kidney disease is an inherited disease in Persian and Persian related cats. Approximately 38 % of Persian cats world-wide are positive for PKD, which is 6% of cats in total, making it the most prominent inherited feline disease. PKD causes the formation of hepatic and renal cysts as well as of fluid-filled renal cysts, often leading to renal failure. Cystic kidneys can sporadically occur in any population of cats, but early onset and bilateral presentation is a hallmark to the hereditary form. The kidney cysts for PKD are present early, generally before 12 months, but renal failure generally occurs at a later time, thus it is considered a late onset renal disease. The presence of cystic kidneys can be determined by 6 to 8 months of age by ultrasonic techniques and affection diagnosis is generally certain by one to two years. Average age for renal dysfunction, not failure, is 7 years for cats with PKD. Thus, with out imaging techniques, cats would go undiagnosed for PKD for many years. Clinical signs are non specific but common to cats experiencing renal dysfunction, including depression, anorexia, reduced appetite, polyuria, polydypsia, and weight loss.
Description

PKD - the mutation Recently, the mutation which is suggested to cause PKD in cats was found by Dr. Leslie Lyons (University of Davis, USA). This mutation was found in all PKD affected cats but not in cats which were tested free by means of ultrasonic techniques.

PKD - the DNA test By DNA testing the mutation can be shown directly. The testing is carried out by state of the art laboratory methods and therefore provides a very high accuracy. In general DNA tests can be done at any age.

The test can be applied to Persian and Persian related cats, which were cross bred to Persians. With this test we can diagnose the reported mutation, but by no means we can report on the presence/absence of the disease (especially in breeds where the correlation of PKD disease and the cited mutation is not proven). The results that are transmitted contain the information on presence/absence of the C to A mutation in the PKD 1 gene exon 29 in the sample of the cat examined. We want to point out that there is still a small possibility of other mutations causing PKD which are not identified so far.

Trait of Inheritance
PKD is inherited as a single autosomal dominant condition. Heterozygous animals show all clinical signs of disease and can not live normal lives. They are able to propagate mutations throughout the population. Generally, 50% of a PKD positive cats' offspring will inherit PKD. Homozygous affected animals for PKD have not been found suggesting that the mutation in its homozygous form is embryonically lethal.

Inheritance : AUTOSOMAL DOMINANT trait
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  4 ) Progressive Retinal Atrophy (pd-PRA)

Breeds
Turkish Angora , British Shorthair (BSH) , Birman (Sacred cat of Burma) , British Longhair (BLH) , Chartreux , Colourpoint , Exotic Shorthair , Persian , Ragdoll , Russian Blue , Scottish Fold Longhair , Scottish Fold Shorthair , Selkirk Rex Longhair , Selkirk Rex Shorthair .
The Disease
The pd- PRA-form of Progressive Retinal Atrophy is an autosomal recessive genetic disorder.

The onset of photoreceptor loss is around 5 weeks of age progressing to severe loss by the age of 16 weeks. Clinical symptoms include uncoordinated eye movement, increased eye-shine was reported as thinning of the retina progresses. Corneal thinning is not observed. Cats with one normal and one mutated gene (carriers) have normal vision although photoreceptor loss has been noted.

Trait of Inheritance
Autosomal Recessive

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The cat is noncarrier of the mutant gene.

It is very unlikely that the cat will develop Progressive Retinal Atrophy (pd-PRA). The cat will never pass the mutation to its offspring, and therefore it can be bred to any other cat.

 

Carrier

Genotype: N / pd-PRA [ Heterozygous ]

The cat carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the cat will develop Progressive Retinal Atrophy (pd-PRA) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear cats.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: pd-PRA / pd-PRA [ Homozygous mutant ]

 

The cat carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The cat is likely to develop Progressive Retinal Atrophy (pd-PRA) and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  5 ) Genetic Blood groups in cats

update September 2019: LABOKLIN holds the patent for the new improved test, which:
  • is validated for all cat breeds except Domestic Shorthair, and
  • can now check for more 'b' allele variants than ever before including the b3 which was identified by researchers at Laboklin, and
  • can check for the 'c' allele which is resposnible for the AB serotyp, and
  • only available at Laboklin
Breed
All Cat Breeds .
The Disease
The AB system is the major blood group system in domestic cats. The common blood types are A and B. Cats with bloodtype B have anti-A antibodies at a high titer and cats with blood type A have anti-B antibodies at a low titer. Cats with the rare AB blood type do not have anti-A or anti-B antibodies. These natural antibodies can leed to bloodgroup incompatibility that can be lethal. The condition is known as Neonatal isoerythrolysis (NI), first symptoms are dyspnea, vomiting and agitation.

A recent study at Laboklin identified a number of new variants involved in determining the different blood groups in cats. Our Genetic Blood Group DNA test has now been updated with the new variants and as a result we can now screen all cat breeds except Domestic Shorthair for genetic blood groups. The updated test can detect the 'b' mutation which is reposnible for blood group 'B' more accurately than before and in more breeds, and the 'c' mutation which is repsonsible for blood group 'AB' in Ragdoll and Bengal can now be detected.

The test is valid for all cat breeds except: Domestic Shorthair.

The new improved test is more comperhensive than any other commercially available tests.

Neonatal isoerythrolysis (NI):

Neonatal isoerythrolysis occurs when kitten with blood group A or AB (also known as C) are born to a queen with blood type B. A-type and AB-type kittens absorb the anti-A antibodies from the breast milk. The hemolytic disease that ensues can be lethal.

This incompatibility reaction, especially important for breeders, is neonatal isoerythrolysis (NI). Neonatal isoerythrolysis in cats, also called fading kitten syndrome, is a dissolution of the red blood cells.

Only new born cats with blood groups A or AB (also known as C) whose mother has blood group B are affected by NI. In pedigree catteries, neonatal isoerythrolysis may occur in first-born and multiparous queens with blood group B, if they are mated to toms having blood groups A or AB (also known as C).

The kittens, with blood group A and AB (also known as C), which were born healthy, however, take up the mother's antibodies with the colostrum. These bind to the erythrocytes, which are then destroyed. Anaemia, excretion of protein in the urine and jaundice are the consequences, so that the kittens usually die within the first week of life. In some cases, the intestinal barrier is already closed at the time of birth, so that the absorption of the immunoglobulins by the kitten is prevented. Therefore, some theoretically at-risk kittens may not develop neonatal isoerythrolysis. Thus, not all kittens with blood groups A and C whose mother is type B develop NI.

Good to know Blood type B kittens whose mothers have blood group A do not develop NI. This is due to the low anti-B antibody titre in blood group A queens.

As a rule, new born kittens with clinical symptoms cannot be treated successfully. However, neonatal isoerythrolysis can be prevented by determining the blood groups of possible breeding partners in advance and avoiding mating between queens with blood group B and toms with types groups A or AB (also known as C). However, if such mating does occur, the kittens with blood groups A or AB (also known as C) should be separated from their type B mother immediately after birth and should be hand-fed for the first 24-48 hours to prevent them from ingesting colostrum containing high levels of anti-A antibodies, which can cause NI. After this period, the intestinal barrier will be closed and kittens can safely return to the queen and nurse as usual.

For the genetic blood group determination, Laboklin requires either an EDTA blood sample (0.5 - 1 ml) or 2 cheek swabs. The sample run time after sample arrival is approx. 3-5 working days.

Description

The differences between blood types is determined by the activity of cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH). CMAH is only active in type A erythrocytes and either absent or non-functional in type B red blood cells. This inactivity is caused by different mutations in the CMAH gene.

The original mutation which is causative for blood type B was found by Leslie A. Lyons research team and allows for correctly identifying 86 % of all type B cats which still left 14 % of serological type B cats misidentified, especially Ragdolls and Turkish Angora cats.

Our own research shows that additional screening for two other novel mutations correctly identifies 99% of all type B cats. By determining just these two novel variants all type A and B Ragdolls were identified correctly. These two mutations were also found to be causative for blood type B in Turkish Angora, Neva Masquerade, Scottish Fold as well as Domestic Shorthair cats

Leslie A. Lyons research team found another variant in CMAH which is responsible for blood type C (AB) in Ragdolls. We found that this specific mutation is not exclusively found in Ragdolls even though it is rare in other breeds. Type C Bengal cats could also be correctly identified by this mutation and it was also found in British Shorthairs, Maine Coons and Scottish Fold cats.

Since 2017 we practice a genotyping scheme with four variants, three of those to identify blood type B cats correctly and one additional to include the most common variant for blood type C.

The test now detects three genetic variants for the 'b' allele (268T>A, 179G>T, 1322delT) and one variant for the 'c' allele (364C>T).

The 3 'b' variants are also known as b1, b2, and b3.

Trait of Inheritance

Inheritance : N > c > b trait
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks
Price for the above 5 tests
£ 72.00 (including VAT)

To order:




new test:
Androgen Insensitivity Syndrome (AIS)
new test:
ACAN Dwarfism (Chondrodysplasia)
new test:
Predictive Height Test ( LCORL)
new test:

Tractability
new test:
Coat colour Sunshire Dilution



See also:

 
 
Home   |   Genetic Diseases  |   Coat Colours / Length  |   Identity / Parentage  |   Reptiles & Amphibians  |   Avian Tests  |   Profiles / Screening  |   Infectious Diseases  |   Organs / Parameters  |   Allergy testing  |   Pathology  |   About us  |   Contact Us
LABOKLIN GmbH & Co. KG
ISO / DIN 17025 Accredited Laboratory
© 2007-2023 Laboklin (UK)
Unit 20, Wheel Forge Way, Trafford Park, Manchester, M17 1EH
Tel. 0161 282 3066