LABOKLIN (UK)| Genetic Diseases | Dogs| Poodle Pack 2 DNA Bundle (DM2, NEWS, prcd-PRA*, rcd4-PRA, vWD1, Coat colour (A+B+D+E+K))
prices in Pound
 
  Home
  News and offers
  Genetic Diseases
Dogs
Cats
Horses
Cattle
Pigs
Rabbit
Sheep
  Coat Colours / Length
  Identity / Parentage
  Reptiles & Amphibians
  Avian Tests
  Profiles / Screening
  Infectious Diseases
  Organs / Parameters
  Allergy testing
  Pathology
  Downloads & Order
  Order Kit Online
  About Us
  Crufts & Shows
  Contact Us
  Kennel Club ABS
  facebook
 
**NEW**



Maine Coon Special offer:
8 DNA tests for just £84.95 incl VAT
Maine Coon 8 DNA tests bundle (HCM, SMA, PKDef, Poly, b, b1, cb, cs) 
**NEW**



Bengal Special offer:
4 Bengal Specific DNA tests for just £72.00 incl VAT
Bengal DNA bundle (rdAc-PRA + b-PRA + PK-Def + Blood Groups) 



British Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
British Short / Long Hair DNA bundle (PKD + pd-PRA + ALS + Blood Groups)



Burmese Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Burmese DNA bundle (Hypokalemia (BHK) + Head Defect + Gangliosidosis (GM2) + Blood Groups



Birman Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Birma DNA bundle (PKD + pd-PRA + Hypotrichiose + MPS6 + Blood Groups)



Maine Coon Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Maine Coon DNA bundle (HCM1 + SMA + PK-Def + F11 + Blood Groups)



Ragdoll Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood Groups)



Norwegian Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood Groups)



Feline Special Offer:
8 cat DNA tests for just £84.95 including VAT
HCM, HCR, GSD4, PKD, PRA, PK-Def., SMA, Blood Groups

new test:      Paradoxical Pseudomyotonia (PP) in English Cocker and English Springer Spaniels  
new test:      Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
new test:      Lysosomal Storage Diseases (LSD) in Dalmatian and Doberman  
new Kennel Club DNA testing schemes with LABOKLIN:
   Osteochondrodysplasia (OCD) / Skeletal Dwarfism in Miniature Poodles
  DINGS2: Deafness with Vestibular Dysfunction in Doberman
   Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel


Poodle Pack 2 DNA Bundle (DM2, NEWS, prcd-PRA*, rcd4-PRA, vWD1, Coat colour (A+B+D+E+K))

Test number: 8857

Price: £ 180.00 (including VAT) for all 10 tests
Poodle Pack 2 DNA Bundle (DM2 + NEWS + prcd-PRA* + rcd4-PRA + vWD1 + Coat colour (A+B+D(d1)+ E(e1)+K))

  1 ) Degenerative Myelopathy / Degenerative Radiculomyelopathy) DM (Exon 2) / SOD1

Breeds
Airedale Terrier , Alaskan Malamute , All Dog Breeds , American Eskimo , Bernese Mountain Dog , Bloodhound , Borzoi (Russian Wolfhound) , Boxer , Cavalier King Charles Spaniel , Canaan Dog , Welsh Corgi (Cardigan) , Chesapeake Bay Retriever , Cockapoo (English) , Cockapoo (American) , Fox Terrier , French Bull Dog , German Shepherd , Glen Of Imaal Terrier ( GIT ) , Golden Retriever , Goldendoodle , Pyrenean Mountain Dog (Great Pyrenees) , Hovawart , Pumi ( Hungarian Pumi / Pumik ) , Jack Russell Terrier , Kerry Blue Terrier , Labradoodle , Labrador Retriever , Lakeland Terrier , Northern Inuit (Tamaskan / British Timber Dog) , Nova Scotia Duck tolling Retriever ( NSDTR / Toller) , Pembroke Welsh Corgi , Poodle , Pug , Rhodesian Ridgeback , Rough Collie , Soft Coated Wheaten Terrier , Shetland Sheepdog (Sheltie) , Smooth Collie , Utonagan , Wire Fox Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Chesapeake Bay Retriever, French Bull Dog, German Shepherd, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Rough Collie, and Smooth Collie.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Canine degenerative myelopathy (also known as chronic degenerative radiculomyelopathy) is a progressive disease of the spinal cord in older dogs. The disease has an insidious onset typically between 7 and 14 years of age. It begins with a loss of coordination (ataxia) in the hind limbs. As of July 15, 2008 the mutated gene responsible for DM has been found present in 43 breeds including German Shepherds, Boxers, Chesapeake Bay Retrievers, Rhodesian Ridgebacks, and both breeds of Welsh Corgis. The disease is chronic and progressive, and resulting in paralysis.
Clinical Signs
Degenerative myelopathy initially affects the back legs and causes muscle weakness and loss, and lack of coordination. These cause a staggering effect that may appear to be arthritis. The dog may drag one or both rear paws when it walks. This dragging can cause the nails of one foot to be worn down. The condition may lead to extensive paralysis of the back legs. As the disease progresses, the animal may display symptoms such as incontinence and has considerable difficulties with both balance and walking. If allowed to progress, the animal will show front limb involvement and extensive muscle atrophy. Eventually cranial nerve or respiratory muscle involvement necessitates euthanasia. Progression of the disease is generally slow but highly variable. The animal could be crippled within a few months, or may survive up to three years
Description

SOD1-Gene

Please note that Exon 2 can be found in all dog breeds, there is another DM mutation in Exon 1 which can only be found in Bernese Mountain Dog, click here for more information.

For bernese Mountain Dog we have a special offer for both Exon 1 and Exon 2 at reduced price, click here for more details.

Trait of Inheritance
Tow alleles are invloved in Degenerative Myelopathy, A and G, therefore a test result can be A/A, A/G, or G/G.

Mode of inheritance is autosomal recessive with variable penetrance;

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Carrier

Genotype: N / DM (Exon 2) [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Affected

Genotype: DM (Exon 2) / DM (Exon 2) [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog may or may not show signs of the disease
Sample Requirements
Buccal Swabs or 0.5 - 1 ml blood in EDTA Blood Tube
Turnaround
2-3 weeks

  2 ) Neonatal encephalopathy (NE / NEWS)

Breeds
Goldendoodle , Standard Poodle .
The Disease
Neonatal encephalopathy with seizures is an autosomal recessive developmental brain disease. Affected puppies exhibit extreme weakness, those that survive the first week of life generally develop progressively worse ataxia and a whole-body tremor. This is often accompanied by severe generalized clonic-tonic seizures. None have survived to 7 weeks of age. ´The mutation that is suggested to be responsible for NEWS in standard poodles can be detected via DNA-testing.
Trait of Inheritance
Autosomal recessive trait

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Neonatal encephalopathy (NE / NEWS). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / NE [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Neonatal encephalopathy (NE / NEWS) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: NE / NE [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Neonatal encephalopathy (NE / NEWS) and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  3 ) Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127)

Kennel Club: results of this test is accepted by the Kennel Club
Breeds
All Dog Breeds , American Cocker Spaniel , American Eskimo , Australian Cattle Dog , Australian Shepherd , Australian Stumpy Tail Cattle Dog , Australian Stumpy tail cattle Dog , Barbet (French Water Dog) , Bearded Collie , Bolognese , Bolonka Zwetna (Tsvetnaya Bolonki) , Cavapoo , Chesapeake Bay Retriever , Chihuahua , Chinese Crested , Cockapoo (English) , Cockapoo (American) , Cocker Spaniel , Dwarf poodle , English Cocker Spaniel , English shepherd , Entlebuch Mountain dog , Finnish Lapphund , German Spitz (Mittel) , Giant Schnauzer , Golden Retriever , Goldendoodle , Jack Russell Terrier , Japanese Chin , Karelian Bear Dog , Kuvasz , Labradoodle , Labrador Retriever , Lagotto Romagnolo , Lapponian Herder , Markiesje , Miniature Poodle , Miniature American Shepherd , Norwegian Elkhound , Nova Scotia Duck tolling Retriever ( NSDTR / Toller) , Parson Russell Terrier (PRT) , Poodle , Portuguese Waterdog , Schipperke , Australian Silky Terrier , Spanish Water Dog , Standard Poodle , Swedish Lapp Hund , Toy Poodle , Waeller (Wäller) , Yorkshire Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in American Cocker Spaniel, Australian Cattle Dog, Australian Shepherd, Barbet (French Water Dog), Chesapeake Bay Retriever, Chinese Crested, Cocker Spaniel, English Cocker Spaniel, Entlebuch Mountain dog, Finnish Lapphund, Giant Schnauzer, Labrador Retriever, Miniature Poodle, Norwegian Elkhound, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Portuguese Waterdog, Spanish Water Dog, Standard Poodle, and Toy Poodle.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Progressive retinal atrophy (PRA) as an inherited disease occurs in many dog breeds and also in different forms. The form of progressive rod-cone degeneration (prcd-PRA) is a photoreceptor degeneration in dogs with varying ages of onset. This genetic disorder causes the degeneration of retinal cells in the eye: firstly, rod cells are affected, thus leading to progressive night blindness. Secondly, degeneration of the cone cells results in complete blindness of the dog, even in full light situations during the day.

Age of onset of clinical symptoms is typically in early adolescence or early adulthood. However, the onset of the disease may vary among different dog breeds.

Since diagnosis of retinal diseases in dogs may prove difficult, the genetic test on prcd-PRA helps to diagnose a specific disease and is also a useful tool for breeders to eliminate the mutated gene from the dog population.

Please note that Lapponian Herder can be affected two other forms of PRA, the IFT122-PRA and the Canine Multi-Focal Retinopathy (CMR) which is caused by a mutation in the BEST1-gene.

Trait of Inheritance
The mutation in the PRCD gene which has been suggested to cause prcd-PRA has recently been published by the group of Gustavo D. Aguirre at the University of Pennsylvania, USA, and could be found in several dog breeds. Prcd-PRA is inherited as an autosomal recessive trait. So there are three conditions a dog can be: it can be clear (genotype N/N or homozygous normal) meaning that it does not carry the mutation and will not develop the prcd-form of PRA. Since it also cannot pass the mutation onto its offspring, it can be mated to any other dog.

A dog which has one copy of the PRCD gene with the mutation and one copy without the mutation is called a carrier or heterozygous (genotype N/PRA); while it will not be affected by prcd-PRA, it can pass the mutation onto its offspring and should therefore only be mated to clear dogs. Dogs that develop this form of PRA have two PRCD gene copies with the mutation (genotype PRA/PRA or homozygous affected); they will always pass the mutated gene onto their offspring and should also be mated only to clear dogs..


Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / PRA [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: PRA / PRA [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Progressive Retinal Atrophy (prcd-PRA): (8094P / 8127) and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  4 ) Progressive retinal atrophy ( rcd4-PRA) / LOPRA

Breeds
Australian Cattle Dog , Bolonka Zwetna (Tsvetnaya Bolonki) , Cavapoo , Cockapoo (English) , Cockapoo (American) , Dwarf poodle , English Setter , Gordon Setter , Irish Red and White Setter , Irish Setter (Red Setter) , Labradoodle , Miniature Poodle , Old Danish Pointing Dog , Polish Lowland sheepdog , Poodle , Small Munsterlander , Standard Poodle , Tatra Shepherd Dog (POP) , Tibetan Terrier , Toy Poodle .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in English Setter, Gordon Setter, Irish Setter (Red Setter), Standard Poodle, and Tibetan Terrier.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Progressive retinal atrophy (PRA) is a major hereditary cause of blindness in pedigree dogs as is its counterpart retinitis pigmentosa (RP) in humans. PRA shows genetic heterogeneity, as does RP, with several distinct forms already recognized and several more remaining to be investigated.

One can distinguish between late onset forms of PRA and early onset (whelp-age) dysplastic changes. The clinical and ophthalmologic signs of both forms are similar. Affected dogs suffer from bilateral Mydriasis, the reflection of the Tapetum lucidum is increased and the retinal vascular network appears atrophic.

The rcd4 PRA is another form of PRA, it is also known as LOPRA (Late Onset PRA) the age of onset of dogs with LOPRA varies from few years of age (2-3 years) up to old age (10-11 years)

Trait of Inheritance
Autosomal recessive

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA. The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / rcd4 [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: rcd4 / rcd4 [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Progressive retinal atrophy ( rcd4-PRA) / LOPRA and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  5 ) von Willebrand disease Type I (vWD I)

Breeds
Barbet (French Water Dog) , Bernese Mountain Dog , Cavapoo , Cockapoo (English) , Cockapoo (American) , Coton de Tulear , Doberman Pinscher , Drentsche Patrijschond , English Toy Terrier , German Pinscher , Goldendoodle , Irish Red and White Setter , Irish Setter (Red Setter) , Kerry Blue Terrier , Kromfohrländer , Labradoodle , Manchester Terrier , Miniature Poodle , Papillon (Continental Toy Spaniel ) , Pembroke Welsh Corgi , Poodle , Stabyhound ( Stabijhoun ) , Standard Poodle , Toy Poodle .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Doberman Pinscher, Manchester Terrier, Papillon (Continental Toy Spaniel ), and Standard Poodle.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
We are pleased to announce that Laboklin obtained an exclusive European License to perform this important genetic tes from Vet Gen LCC the owner of the European patentt.

Von Willebrand disease (vWD) is probably the most common inherited bleeding disorder in dogs. It is caused by lack of von Willebrand factor which is a protein that plays a key role in the blood clotting process resulting in prolonged bleeding. The disorder occurs in varying degrees of severity ranging from trivial bleeding to excessive life threatening haemorrhages.

Clinical Signs
Symptoms include spontaneous bleeding from the nose, gum and other mucous membranes. Excessive bleeding occurs after an injury, trauma or a surgery. Often dogs don’t show clinical signs until something starts the bleeding, such as nail trimming, teething, spaying, sterilizing, tail docking, cropping or other causes. Bleeding also occurs internally in the stomach, intestines, urinary tracts, the genitals and / or into the joints.

Type I von Willebrand's disease is considered relatively mild when compared to Type II in Scotch Terriers and Shetland Sheep Dogs and Type III in the German Wirehaired pointer, Type II and Type III are much more severe than type I.

Description

The Mutation-based Test and its Advantages
A new DNA test has now been developed for the type I vWD.

Genetic testing makes it possible to identify whether a dog is clear, carrier or affected. This is vital to eliminate this condition from the breed within 2-3 generations.

The new DNA test can identify the responsible mutation directly.

This DNA test can be done at any age and unambiguously classifies dogs into affected, carriers and clear. The test enables breeders to eliminate the vWD disease gene from the Poodles. Carriers can be clinically normal because of a low penetrance or expressivity of the disease. This information is essential for controlling this disorder in the breed.

Breeders and owners should view vWD as a significant health risk and strive to get rid of the mutated gene. The discovery of the mutation, and the recent development of a DNA test, now provides just that opportunity.

Trait of Inheritance
vWD Type I is transmitted as autosomal incomplete dominant trait . Dogs with vWD Type 1 may experience mild to moderate bleeding tendencies, however, not all dogs with the mutation will exhibit symptoms

Inheritance : AUTOSOMAL Dominant with Incomplete Penetrance trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop von Willebrand disease Type I (vWD I). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / vWDI [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

These dogs may exhibit mild to moderate bleeding tendencies, but not all will show clinical signs.

 

Affected

Genotype: vWDI / vWDI [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

Dogs with two copies of the mutation are more likely to show more severe symptoms.
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  6 ) Coat Colour: A-Locus Agouti ( fawn, sable, black and tan/tricolor, recessive black)

Update
May 2023: The A locus test has now changed, it is more comprehensive and provides better understanding of the phenotypes caused by variations this gene. It also explains some phenotypes which could not have been explained before.
Breed
All Dog Breeds .
Description

 
Further reading
Coat Colour Inheritance Chartshtml file
Brittany Coat ColoursPDF file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-3 weeks

  7 ) Coat Colour: B Locus (bd, bc, bs) Brown Coat Colour

Breeds
All Dog Breeds , American Cocker Spaniel , Australian Shepherd , Bedlington Terrier , Border Collie , Welsh Corgi (Cardigan) , Dachshund , Dalmatian , Doberman Pinscher , English Cocker Spaniel , Flatcoated Retriever , Fox Terrier , French Bull Dog , Galgo Espanol , German Longhaired Pointer , German Shorthair Pointer , Gordon Setter , Griffon Bruxellois , Irish Soft Coated Wheaten Terrier , Koolie ( Australian Koolie ) , Labrador Retriever , Miniature Pinscher , Newfoundland , Pointer , Portuguese Waterdog , Scottish Terrier , Weimaraner .
Description

This test is for the 'bd', 'bc' and 'bs'variants, which are described in all dog breeds and are responsible for the brown coat colour, which is also known in some breeds as liver, chocolate, chestnut, sedge, and less frequently, red. Two copies of the b-allele are needed to dilute black pigment to brown. For red or yellow dogs, the brown allele does not dilute the hair colour, but will change the colour of nose and foot pads from black to brown if two brown alleles are present.

When one of the variants is found homozygous (bd/bd, bc/bc or bs/bs), dark pigment (eumelanin) is diluted to brown in the pigmented areas. However, when several variants of the B-locus are found in heterozygous state (example N/bd and N/bc), it is not always possible to directly determine the influence on the eumelanin because this depends on whether the variants are located on the same or different chromosmes, however, the dog will definitely pass the variants to its offspring.

Australian Shepherd and Lancashire Heeler

Please note there are two additional rare variants, which are not analysed in this test. The 'b4' variant which is only found in few Australian Shephered lines, and the 'be' variant which is only found in Lancashire Heeler, and therefore for a complete analysis in Australian Shepherd and Lancashire Heeler, you need to order this test in addition to the rare variant test . You can take advantage of our special offer 'second coat colour test at half price (excluding bundles)'.

French Bulldog

In French Bulldog, in addition to the B-locus, the Cocoa gene is also responsible for the brown coat colour, and therefore, in addition to this test you also need to order the Cocoa coat colour test . You can of course take advantage of our special offer 'second coat colour test at half price (excluding bundles)'.

 
Further reading
Coat Colour Inheritance ChartsHTML file
Brittany Coat ColoursPDF file
B Locus Inheritence ChartPDF file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-3 weeks

  8 ) Coat Colour: D-Locus D1 ( Dilution / Dilute )

Breeds
All Dog Breeds , Border Collie , Boston Terrier , Bulldog (English) , Chihuahua , Doberman Pinscher , French Bull Dog , German Pinscher , Koolie ( Australian Koolie ) , Labrador Retriever , Large Munsterlander , Miniature Pinscher , Newfoundland , Rhodesian Ridgeback , Staffordshire Bull Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Labrador Retriever.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

Description

The D locus is the primary locus associated with diluted pigment, which results in coats that would otherwise be black or brown instead showing up as gray, or blue in the case of black, and pale brown or Isabella / Lilac / Lavender in the case of brown. The melanophilin gene has recently been shown to be responsible, but not all of the dilute causing mutations have been identified yet.

A recessive mutation in the melanophilin gene was identified as the cause of colour dilution phenotypes in the dog. Two alleles (variants) are described: the dominant full colour (D) and the recessive dilute (d). Two copies of dilute are needed to lighten black pigment to blue / grey and brown (liver / chocolate / cocoa / red in border collie) pigment to lilac / isabella / lavender (in Pomeranian). A diagnostic DNA test identifies the specific variants of the MLPH gene.

Please note that in the Chow Chow, Thai Ridgeback and Sloughi breeds, there is another mutation that can cause coat colour dilution, it is the D2 Locus mutation and in those breeds both D1 Locus and D2 Locus mutations must be tested for complete analysis.

Please note that in the Chihuahua, Italian Greyhound, Mudi (Hungarian Mudi) and Hungarian Pumi breeds, there is another mutation that can cause coat colour dilution, it is the D3 Locus mutation and in those breeds both D 1Locus and D3 Locus mutations must be tested for complete analysis.

Please note that dilution (blue, lilac, isabella, etc) is just a colour and that it is not known to be associated with any health conditions

KC

Please note that this test is part of the KC DNA testing scheme in Labrador Retriever. If you would like Laboklin to send the result to the KC, please sign the declaration at the bottom of the form to give us a permission . Please note that the KC will oly publish clear results but would make a note of any result received.


Colour Dilution Alopecia (CDA)

There is no test for CDA and there is no evidence that CDA is caused by dilution

CDA is a genetic recessive inherited condition that causes patches of hair thinning or loss and may also include flaky and/or itchy skin. CDA occurs in dilute dogs (homozygous for the dilute gene d/d) in some breeds, however there is no direct link between CDA and the dilute gene, and there is no evidence that the dilute gene is responsible for CDA. It is though that there are other, not yet identified, genetic factors causing CDA in dilute dogs of some breeds. Any colour can carry CDA but symptoms are only expressed in blue and isabella dogs affected by CDA.

breeding

Since CDA is a recessive gene, it can, in theory, be bred out of most lines by breeding dilute dogs with healthy coats. Breeding healthy dilute dogs with healthy dilute dogs is one way to reduce the occurrence of CDA until testing becomes available.

Breeds known to be affected by CDA:

  • Bernese Mountain Dog
  • Boston Terrier
  • Chihuahua
  • Chow Chow
  • Dachshund
  • Doberman Pinscher
  • Great Dane
  • Irish Setter
  • Italian Greyhound
  • Mudi (Hungarian Mudi)
  • Newfoundland
  • Saluki
  • Schipperke
  • Shetland Sheepdog
  • Standard Poodle
  • Whippet
  • Yorkshire Terrier

 
Further reading
Coat Colour Inheritance Chartshtml file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-3 weeks

  9 ) Coat Colour: E-Locus E1 (yellow, lemon, red, cream and appricot)

Breeds
Afghan Hound , All Dog Breeds , Australian Cattle Dog , Australian Shepherd , Beagle , Border Collie , Brittany ( Brittany Spaniel ) , Welsh Corgi (Cardigan) , Chinese Chow Chow , Cocker Spaniel , Dachshund , Dalmatian , Doberman Pinscher , English Cocker Spaniel , English Setter , English Springer Spaniel , Field Spaniel , Flatcoated Retriever , Foxhound , French Bull Dog , German Longhaired Pointer , German Shepherd , German Wirehaired Pointer , Gordon Setter , Koolie ( Australian Koolie ) , Labrador Retriever , Lowchen , Miniature Schnauzer , Pointer , Pomeranian , Poodle , Pudelpointer .
Description

Coat Colours

As with other mammals, dogs have two major types of pigment in their coat: dark pigment (Eumelanin) which is responsible for black and brown in the pigmented areas, and yellow pigment (Phaeomelanin) which is responsible for red, yellow, orange, golden, cream, apricot in the pigmented areas. The colour varieties seen in dogs are due to genes controlling the amount, extent, and distribution of these two colour pigments.

E-Locus

The E-Locus has a number variants, the 'e1' variant which is responsible for the yellow colours in most breeds, the rare 'e' variants which are repsonsible for the same but in certain breeds, and the special variants 'eA', 'eg' and 'eh' which are responsible for specific colours, some of them occurs only in specific breeds including domino, grizzle, sable and hare-pied. The EM variant is also located at the E-Locus and esponsible for the melanistic mask. This test is only for 'e1' variant.

The 'e1' variant

This test detects the 'e1' variant of the E-Locus, the 'e1' variant is responsible for the red, yellow, orange, golden, cream, apricot coat in the pigmented area in most breeds. The 'e1' variant is recessive which means that two copies of 'e1' (e1/e1) are needed for the dog to be red, yellow, orange, golden, cream, apricot in the pigmented areas. This test number 8018 which is offered in this test as an individual test, however, it is also included in our popular Laboklin Coat Colour Bundle (bundle number 8654)

Australian Cattle Dog

Please note there are additional rare E-Locus variants, which are not analysed in this test. The 'e2' variant is found in Australian Cattle Dog only and therefore for a complete analysis in Australian Cattle Dog, you need to order this test 'e1' in addition to the rare variant test . You can take advantage of our special offer additional coat colour test at half price'.

E-Locus Special colours: 'eA', 'eG' and 'eH'

Testing for these special colours is avaialable in a separate test, for more information check test number 8682 special E-Locus variants 'eA', 'eG' and 'eH'. You can take advantage of our special offer additional coat colour test at half price'.

EM-Locus Melanistic Mask

Testing for Melanistic Mask is available in a separate test, for more information check test number 8146 EM-Locus (Melanistic Mask). You can take advantage of our special offer additional coat colour test at half price'.

Order of dominance: EM> EG> E> EH> e.

 
Further reading
Coat Colour Inheritance Chartshtml file
Brittany Coat ColoursPDF file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-3 weeks

  10 ) Coat Colour: K- Locus (KB and ky)

Please note that this test will only check for the KB and ky alleles. For brindle: we are pleased to announce that from today (01/02/2024) we offer a test for the K-Locus: Brindle (kbr)
Breed
All Dog Breeds .
Description

The K locus plays a pivotal role in coat colour. This locus is a relative newcomer in our understanding of canine colour, and includes traits formerly attributed by some to other genes.

The dominant allele in the series is KB, which is responsible for self-colouring, or solid coloured fur in pigmented areas. This trait was formerly attributed to the Agouti (A) locus as AS, but recent breeding studies had shown this not to be the case.

There are two other alleles, kbr, and ky. KB is dominant to both kbr and ky, while kbr is dominant only to ky. kbr is responsible for the brindle. The recessive allele, ky, allows the basic patterns of the A locus to be expressed. So too does the kbr allele, but with brindling of any tan, fawn, or tawny areas. Any animal with at least one KB allele will be self-coloured.

Any animal with at least one kbr allele, and no KB alleles will be brindled on agouti background (see A locus). Any animal with two ky alleles will show agouti patterns (see A locus). and ky


LABOKLIN can presently test for these two alleles. In some breeds, where no brindle is present, this represents a complete analysis of the locus. An example would be the Pug. In breeds where the breed standard disqualifies all but self-colored dogs, testing for these two alleles is once again all that is needed. Any animal with two KB alleles cannot produce anything except self-coloured offspring. A prime example here is the Labrador retriever. In breeds where many variations are allowed, these tests can help predict the probability of potential litters to include fawn, sable, tawny, tan point, tricolor or recessive black puppies.

NEWS: BRINDLE IS NOW SOLVED….

checkout the following link: K-Locus: Brindle (kbr)

 
Further reading
Coat Colour Inheritance Chartshtml file
Brittany Coat ColoursPDF file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-3 weeks
Price for the above 10 tests
£ 180.00 (including VAT)

To order:




new test:
Androgen Insensitivity Syndrome (AIS)
new test:
ACAN Dwarfism (Chondrodysplasia)
new test:
Predictive Height Test ( LCORL)
new test:

Tractability
new test:
Coat colour Sunshire Dilution



See also:

 
 
Home   |   Genetic Diseases  |   Coat Colours / Length  |   Identity / Parentage  |   Reptiles & Amphibians  |   Avian Tests  |   Profiles / Screening  |   Infectious Diseases  |   Organs / Parameters  |   Allergy testing  |   Pathology  |   About us  |   Contact Us
LABOKLIN GmbH & Co. KG
ISO / DIN 17025 Accredited Laboratory
© 2007-2023 Laboklin (UK)
Unit 20, Wheel Forge Way, Trafford Park, Manchester, M17 1EH
Tel. 0161 282 3066